Agricultural Engineering and Land Planning Collection
Permanent URI for this collectionhttp://10.10.97.169:4000/handle/123456789/31
Browse
Browsing Agricultural Engineering and Land Planning Collection by Author "Hieronimo, Proches"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Contribution of land use to rodent flea load distribution in the plague endemic area of Lushoto District, Tanzania(Tanzania Journal of Health Research, 2014-07) Hieronimo, Proches; Kihupi, Nganga I.; Kimaro, D. N.; Gulinck, Hubert; Mulungu, Loth S.; Msanya, B. M.; Leirs, Herwing; Deckers, JFleas associated with different rodent species are considered as the major vectors of bubonic plague, which is still rampant in different parts of the world. The objective of this study was to investigate the contribution of land use to rodent flea load distribution at fine scale in the plague endemic area of north-eastern Tanzania. Data was collected in three case areas namely, Shume, Lukozi and Mwangoi, differing in plague incidence levels. Data collection was carried out during both wet and dry seasons of 2012. Analysis of Variance and Boosted Regression Tree (BRT) statistical methods were used to clarify the relationships between fleas and specific land use characteristics. There was a significant variation (P ≤ 0.05) of flea indices in different land use types. Fallow and natural forest had higher flea indices whereas plantation forest mono-crop and mixed annual crops had the lowest flea indices among the aggregated land use types. The influence of individual land use types on flea indices was variable with fallow having a positive effect and land tillage showing a negative effect. The results also demonstrated a seasonal effect, part of which can be attributed to different land use practices such as application of pesticides, or the presence of grass strips around fields. These findings suggest that land use factors have a major influence on rodent flea abundance which can be taken as a proxy for plague infection risk. The results further point to the need for a comprehensive package that includes land tillage and crop type considerations on one hand and the associated human activities on the other, in planning and implementation of plague control interventions.Item Human activity spaces and plague risks in three contrasting landscapes in Lushoto District, Tanzania(Tanzania Journal of Health Research, 2014-07) Hieronimo, Proches; Gulinck, Hubert; Kimaro, D. N.; Mulungu, Loth S.; Kihupi, Nganga I.; Msanya, B. M.; Leirs, Herwing; Deckers, J.Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto District. Data were collected in three landscapes differing in plague incidence. Field survey coupled with Geographic Information System (GIS) and physical sample collections were used to collect data in wet (April to June 2012) and dry (August to October 2012) seasons. Data analysis was done using GIS, one-way ANOVA and nonparametric statistical tools. The degree of spatial co- occurrence of potential disease vectors (fleas) and humans in Lushoto focus differs significantly (p ≤ 0.05) among the selected landscapes, and in both seasons. This trend gives a coarse indication of the possible association of the plague outbreaks and the human frequencies of contacting environments with fleas. The study suggests that plague surveillance and control programmes at landscape scale should consider the existence of plague vector contagion risk gradient from high to low incidence landscapes due to human presence and intensity of activities.Item Integrating land cover and terrain characteristics to explain plague risks in Western Usambara Mountains, Tanzania: a geospatial approach(Tanzania Journal of Health Research, 2014-07) Hieronimo, Proches; Meliyo, Joel; Gulinck, Hubert; Kimaro, D. N.; Mulungu, Loth S.; Kihupi, Nganga I.; Msanya, B. M.; Leirs, Herwing; Deckers, J.Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to humans. These technologies are not widely used in East Africa for studies on diseases including plague. The objective of this study was to refine the analysis of single and combined land cover and terrain characteristics in order to gain an insight into localized plague infection risks in the West Usambara Mountains in north-eastern Tanzania. The study used a geospatial approach to assess the influence of land cover and terrain factors on the abundance and spatial distribution of plague hosts (small mammals) and plague vectors (fleas). It considered different levels of scale and resolution. Boosted Regression Tree (BRT) statistical method was used to clarify the relationships between land cover and terrain variables with small mammals and fleas. Results indicate that elevation positively influenced the presence of small mammals. The presence of fleas was clearly influenced by land management features such as miraba. Medium to high resolution remotely sensed data integrated in a GIS have been found to be quite useful in this type of analysis. These findings contribute to efforts on plague surveillance and awareness creation among communities on the probable risks associated with various landscape factors during epidemics.Item Land use determinants of small mammal abundance and distribution in a plague endemic area of Lushoto District, Tanzania(Tanzania Journal of Health Research, 2014-07) Hieronimo, Proches; Kimaro, D. N.; Kihupi, Nganga I.; Gulinck, Hubert; Mulungu, Loth S.; Msanya, B. M.; Leirs, Herwing; Deckers, J.Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August- October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals’ habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution.Item Land use/cover changes and their influence on the occurrence of landslides: a case study of the northern slopes of the Uluguru mountains, Morogoro, Tanzania(Sokoine University of Agriculture, 2007) Hieronimo, ProchesThe present study was conducted to assess land use/cover changes and their influence on the occurrence of landslides in the northern slopes of Uluguru Mountains, Tanzania. The study focused on the determination of the historical land use/cover changes between 1964 and 2004, evaluation of the biophysical and socio-economic factors influencing land use/cover changes, and examination of the influence of land use/cover changes on the occurrence of landslides. Field survey, remote sensing and GIS techniques were employed to assess land use/cover dynamics. Landslides were mapped through field surveys using GPS and imported in GIS environment. A questionnaire survey was conducted to collect information on socio-economic activities responsible for land use/cover changes and on landslides. Statistical analysis was done using SAS and SPSS softwares. The study demonstrated that land use/cover is dynamic and varies spatially both in terms of coverage and change. Natural vegetation is increasingly replaced by cultivation and urbanisation. Change to rainfed agriculture is more intensive on the mountain ridges by two-fold that of mountain foothills. Urban expansion is very rapid on undulating plains at a mean rate of about 15 ha per year compared to 2 ha per year on the mountain foothills and <1 ha per year in the mountain ridges. Geomorphic characteristics, soils, rainfall distribution and demographic changes are key factors influencing land use/cover dynamics. Land use/cover dynamics (increase in rainfed and irrigated agriculture) greatly influence the occurrence of landslides (R = 0.999, P< 0.05). The observed land use/cover dynamics and their relationship with the occurrence and frequency of landslides call for further research on the effectiveness of different land use options on landslide rehabilitation. Farmers should be sensitised on the influence of land use changes on land degradation and the importance of appropriate soil and water conservation measures to mitigate landslides disasters in the study area.