Department of Engineering Sciences and Technology
Permanent URI for this communityhttp://10.10.97.169:4000/handle/123456789/21
Browse
Browsing Department of Engineering Sciences and Technology by Author "Bellingrath-Kimura, S.D"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Analysis of Intra and Interseasonal Rainfall Variability and Its Effects on Pearl Millet Yield in a Semiarid Agroclimate: Significance of Scattered Fields and Tied Ridges(Water, 2019-03) Silungwe, F.R; Graef, F; Bellingrath-Kimura, S.D; Tumbo, S.D; Kahimba, F.C; Lana, M.AEstablishing food security in sub-Saharan African countries requires a comprehensive and high resolution understanding of the driving factors of crop production. Poor soil and adverse climate conditions are among the major drivers of poor regional crop production. Drought and rainfall variability challenges are not fully being addressed by rainfed producers in semiarid areas. In this study, we analysed the spatiotemporal rainfall variability (STRV) and its effects on pearl millet yield using two seasons of data collected from 38 rain gauge stations scattered randomly in farm plots within a 1500 ha area of semiarid central Tanzania. The STRV effects on pearl millet yield under flat and tied ridge management were analysed. Our results show that seasonal rainfall can vary significantly for neighboring fields at distances of less than 200 m, which impacts yield. The STRV for daily rainfall was found to be more critical than for total seasonal rainfall amounts. Scattering fields can help farmers avoid total harvest loss by obtaining at least some yield from the areas that received adequate rain. The use of tied ridges is recommended to conserve soil moisture and improve yields more than flat cultivation in semiarid areas.Item Crop Upgrading Strategies and Modelling for Rainfed Cereals in a Semi-Arid Climate—A Review(Water, 2018-03) Silungwe, F.R; Graef, F; Bellingrath-Kimura, S.D; Tumbo, S.D; Kahimba, F.C; Lana, M.ASpatiotemporal rainfall variability and low soil fertility are the primary crop production challenges facing poor farmers in semi-arid environments. However, there are few solutions for addressing these challenges. The literature provides several crop upgrading strategies (UPS) for improving crop yields, and biophysical models are used to simulate these strategies. However, the suitability of UPS is limited by systemization of their areas of application and the need to cope with the challenges faced by poor farmers. In this study, we reviewed 187 papers from peer-reviewed journals, conferences and reports that discuss UPS suitable for cereals and biophysical models used to assist in the selection of UPS in semi-arid areas. We found that four UPS were the most suitable, namely tied ridges, microdose fertilization, varying sowing dates, and field scattering. The DSSAT, APSIM and AquaCrop models adequately simulate these UPS. This work provides a systemization of crop UPS and models in semi-arid areas that can be applied by scientists and pItem The management strategies of pearl millet farmers to cope with seasonal rainfall variability in a semi-arid agroclimate(Agronomy, 2019-07) Silungwe, F.R; Graef, F; Bellingrath-Kimura, S.D; Tumbo, S.D; Kahimba, F.C; Lana, M.ARainfed agriculture constitutes around 80% of the world’s agricultural land, achieving the lowest on-farm crop yields and greatest on-farm water losses. Much of this land is in developing countries, including sub-Saharan Africa (SSA), where hunger is chronic. The primary constraint of rainfed agriculture—frequently experienced in SSA—is water scarcity, heightened by the unpredictability of season onset, erratic rainfall, as well as the inability of farmers to provide adequate soil and crop management. Farmers react differently to constraints, making a variety of choices—including the timing of planting, type of land cultivation, fertilization, and scattered fields, among many others. Limited information is available on the combined effects of these strategies for improving crop yield and water use efficiency (WUE). An experiment was co-conducted with farmers over four consecutive rainy seasons (2014–2018) in Tanzania, to evaluate these strategies for single and joint effects in improving yield and WUE on rainfed pearl millet (Pennisetum glaucum (L.) R.Br.). The treatments used were flat cultivation both without and with microdosing, as well as tied ridging without and with microdose interaction, with different planting dates depending on farmers’ decisions. Results show that farmers react differently to the early, normal, or late onset of the rainy season, and cumulative rainfall during its onset, which affects their decisions regarding planting dates, yield, and WUE. Microdose fertilization increases both the yield and WUE of pearl millet significantly, with greater effects obtained using tied ridging compared to flat cultivation. For low-income smallholder farmers in a semi-arid agroclimate, using tied ridging with microdosing during early planting is an effective response to spatiotemporal rainfall variability and poor soils.Item Modelling rainfed pearl millet yield sensitivity to abiotic stresses in semi-arid central Tanzania, Eastern Africa(Sustainability, 2019-08) Silungwe, F.R; Graef, F; Bellingrath-Kimura, S.D; Chilagane, E; Tumbo, S.D; Kahimba, F.C; Lana, M.ADrought and heat-tolerant crops, such as Pearl millet (Pennisetum glaucum), are priority crops for fighting hunger in semi-arid regions. Assessing its performance under future climate scenarios is critical for determining its resilience and sustainability. Field experiments were conducted over two consecutive seasons (2015/2016 and 2016/2017) to determine the yield responses of the crop (pearl millet variety “Okoa”) to microdose fertilizer application in a semi-arid region of Tanzania. Data from the experiment were used to calibrate and validate the DSSAT model (CERES Millet). Subsequently, the model evaluated synthetic climate change scenarios for temperature increments and precipitation changes based on historic observations (2010–2018). Temperature increases of +0.5 to +3.0 ◦C (from baseline), under non-fertilized (NF) and fertilizer microdose (MD) conditions were used to evaluate nine planting dates of pearl millet from early (5 December) to late planting (25 February), based on increments of 10 days. The planting date with the highest yields was subjected to 49 synthetic scenarios of climate change for temperature increments and precipitation changes (of −30% up to +30% from baseline) to simulate yield responses. Results show that the model reproduced the phenology and yield, indicating a very good performance. Model simulations indicate that temperature increases negatively affected yields for all planting dates under NF and MD. Early and late planting windows were more negatively affected than the normal planting window, implying that temperature increases reduced the length of effective planting window for achieving high yields in both NF and MD. Farmers must adjust their planting timing, while the timely availability of seeds and fertilizer is critical. Precipitation increases had a positive effect on yields under all tested temperature increments, but Okoa cultivar only has steady yield increases up to a maximum of 1.5 ◦C, beyond which yields decline. This informs the need for further breeding or testing of other cultivars that are more heat tolerant. However, under MD, the temperature increments and precipitation change scenarios are higher than under NF, indicating a high potential of yield improvement under MD, especially with precipitation increases. Further investigation should focus on other cropping strategies such as the use of in-field rainwater harvesting and heat-tolerant cultivars to mitigate the effects of temperature increase and change in precipitation on pearl millet yield.