• English
  • CatalĆ 
  • ČeÅ”tina
  • Deutsch
  • EspaƱol
  • FranƧais
  • GĆ idhlig
  • Italiano
  • LatvieÅ”u
  • Magyar
  • Nederlands
  • Polski
  • PortuguĆŖs
  • PortuguĆŖs do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • TürkƧe
  • Tiįŗæng Việt
  • ŅšŠ°Š·Š°Ņ›
  • বাংলা
  • ą¤¹ą¤æą¤‚ą¤¦ą„€
  • Ελληνικά
  • Дрпски
  • YŠŗŃ€Š°Ń—ĢŠ½ŃŃŒŠŗŠ°
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • CatalĆ 
  • ČeÅ”tina
  • Deutsch
  • EspaƱol
  • FranƧais
  • GĆ idhlig
  • Italiano
  • LatvieÅ”u
  • Magyar
  • Nederlands
  • Polski
  • PortuguĆŖs
  • PortuguĆŖs do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • TürkƧe
  • Tiįŗæng Việt
  • ŅšŠ°Š·Š°Ņ›
  • বাংলা
  • ą¤¹ą¤æą¤‚ą¤¦ą„€
  • Ελληνικά
  • Дрпски
  • YŠŗŃ€Š°Ń—ĢŠ½ŃŃŒŠŗŠ°
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Bentaleb, Abdelhak"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bandwidth prediction schemes for defining bitrate levels in SDN-enabled adaptive streaming
    (PEARL, 2019) Al-Issa, Ali Edan; Bentaleb, Abdelhak; Barakabitze, Alcardo Alex; Zinner, Thomas; Ghita, Bogdan
    The majority of Internet video traffic today is delivered via HTTP Adaptive Streaming (HAS). Recent studies concluded that pure client-driven HAS adaptation is likely to be sub-optimal, given clients adjust quality based on local feedback. In [1], we introduced a network-assisted streaming architecture (BBGDASH) that provides bounded bitrate guidance for a video client while preserving quality control and adaptation at the client. Although BBGDASH is an efficient approach for video delivery, deploying it in a wireless network environment could result in sub-optimal decisions due to the high fluctuations. To this end, we propose in this paper an intelligent streaming archiĀ­ tecture (denoted BBGDASH +), which leverages the power of time series forecasting to allow for an accurate and scalable network- based guidance. Further, we conduct an initial investigation of parameter settings for the forecasting algorithms in a wireless testbed. Overall, the experimental results indicate the potential of the proposed approach to improve video delivery in wireless network conditions.

Sokoine University of Agriculture | Copyright Ā© 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback