• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Bonfoh, B"

Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Circulating Brucella species in wild animals of the Serengeti ecosystem, Tanzania
    (Springer, 2021) Sambu, R. M; Mathew, C; Nonga, H. E; Lukambagire, A. S; Yapi, R. B; Akoko, J; Fokou, G; Keyyu, J. D; Bonfoh, B; Kazwala, R. R
    Background: Brucellosis is a bacterial zoonosis of public health and economic importance worldwide. It affects a number of domestic animals, wild animals and humans. Human brucellosis originates from either livestock or wildlife. The species of Brucella circulating in wild animals in Tanzania is largely unknown due to insufficient surveillance. This study was carried out to identify Brucella species found in selected wildlife hosts in the Serengeti ecosystem. Methodology: The study used a total of 189 archived samples that were obtained from cross-sectional studies previously conducted between 2000 and 2017 in the Serengeti ecosystem in Tanzania. Whole blood, serum and amniotic fluid collected from buffalos, lions, wildebeest, impala, zebra and hyena were available for DNA extraction. Multiplex polymerase chain reaction for B. abortus, B. melitensis, B. ovis and B. suis (AMOS PCR) and quantitative real time PCR (qPCR) targeting the bcsp31 and IS711 genes for Brucella genus detection and the IS711 targets alkB for B. abortus and BMEI1162 for B. melitensis were used to detect Brucella strains. Results: Out of the 189 samples tested, 12 (6.35 %) and 22 (11.6 %) were positive to AMOS-PCR and qPCR, respectively. Most of the positive samples were from lions (52.6 %) and buffaloes (19.6 %). Other animals that were positive included: wildebeest (13.6 %), impala (13.6 %), zebra (4.5 %) and hyena (4.5 %). Out of 22 positive samples, 16 (66.7 %) were identified as B. abortus and the other six samples did not amplify for neither B. abortus nor B. melitensis. Conclusions: The detection of Brucella DNA in archived wild animal samples shows testing potential of samples collected from this population. The zoonotic species B. abortus and B. melitensis detected in wild animals have previously been reported in livestock and humans in the region. The findings suggest that, due to the contact network, some of the identified wild animal hosts in this study could be reservoirs for infections in domestic animals and humans within the Serengeti ecosystem while others are likely dead-end hosts. One Health control strategies and continuous surveillance programs in other wildlife reserved areas should be implemented to help predicting transmission in livestock and humans in the region.
  • Loading...
    Thumbnail Image
    Item
    Molecular epidemiology of Brucella species in mixed livestock-human ecosystems in Kenya
    (Nature scientific Report, 2021) Akoko, JM; Pelle, R; Lukambagire, AS; Machuka, EM; Nthiw, D; Mathew, C; Fèvre, EM; Bett, B; Cook, EAJ; Othero, D; Bonfoh, B; Kazwala, R; Shirima, G; Schelling, E; Halliday, JEB; Ouma, C
    Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.
  • Loading...
    Thumbnail Image
    Item
    Serological and molecular evidence of brucella species in the rapidly growing pig sector in Kenya
    (BMC Veterinary Research, 2020) Akoko, J; Pelle, R; Kivali, V; Schelling, E; Shirima, G; Mathew, C; Kyallo, V; Bonfoh, B; Kazwala, R; Ouma, C; Machuka, E. M.; Fèvre, E. M.; Falzon, L. C.; Lukambagire, A. S.; Halliday, J. E. B.
    Background: Brucellosis is an emerging yet neglected zoonosis that has been reported in Kenya. Epidemiological data on brucellosis in ruminants is readily accessible; however, reports on brucellosis in pigs remain limited. This study sought to detect Brucella infection in pig serum by both serological and molecular techniques. Serum from 700 pigs randomly collected at a centralized abattoir in Nairobi region, Kenya were screened in parallel, using both Rose Bengal Test (RBT) and competitive Enzyme-Linked Immuno-sorbent Assay (cELISA) for antibodies against Brucella spp. All sera positive by RBT and 16 randomly selected negative samples were further tested using conventional PCR targeting bcsp31 gene and real-time PCR (RT-PCR) assays targeting IS711 and bcsp31 genes. Results: A prevalence of 0.57% (n = 4/700) was estimated using RBT; none of these samples was positive on cELISA. All RBT positive sera were also positive by both PCRs, while two sero-negative samples also tested positive on RTPCR (n = 6/20). Brucella abortus was detected in four out of the six PCR positive samples through a real-time multiplex PCR. Conclusion: The detection of antibodies against Brucella spp. and DNA in serum from slaughterhouse pigs confirm the presence of Brucella in pigs. Therefore, investigation of the epidemiology and role of pigs in the transmission of brucellosis in Kenya is needed. Further targeted studies would be useful to systematically quantify and identify the spp. of Brucella in pigs.
  • Loading...
    Thumbnail Image
    Item
    Seroprevalence of brucellosis in small ruminants and related risk behaviours among humans in different husbandry systems in Mali
    (PLoSONE, 2021) Traore, S; Coulibaly, K; Mathew, C; Fokou, G; Bonfoh, B; Yapi, R. B.; Kazwala, R. R.; Alambedji, R. B.
    Mali has a high pastoral potential with diverse coexisting production systems ranging from traditional (nomadic, transhumant, sedentary) to commercial (fattening and dairy production) production systems. Each of those systems is characterised by close interactions between animals and humans, increasing the potential risk of transmission of zoonotic diseases. The nature of contact network suggests that the risks may vary according to species, production systems and behaviors. However, the study of the link between small ruminants and zoonotic diseases has received limited attention in Mali. The objective of this study was to assess brucellosis seroprevalence and determine how the husbandry systems and human behaviour expose animal and human to infection risk. A cross-sectional study using cluster sampling was conducted in three regions in Mali. Blood was collected from 860 small ruminants. The sera obtained were analysed using both Rose Bengal and cELISA tests. In addition, 119 farmers were interviewed using a structured questionnaire in order to identify the characteristics of farms as well as the risk behaviors of respondents. Husbandry systems were dominated by agro-pastoral systems followed by pastoral systems. The commercial farms (peri-urban and urban) represent a small proportion. Small ruminant individual seroprevalence was 4.1% [2.8–5.6% (95% CI)]. Herd seroprevalence was estimated at 25.2% [17.7–33.9% (95% CI)]. Peri-urban farming system was more affected with seroprevalence of 38.1% [18.1–61.5 (95% CI)], followed by pastoral farming system (24.3% [11.7–41.2 (95% CI)]). Identified risk behaviors of brucellosis transmission to animals were: exchange of reproductive males (30.2%); improper disposal of placentas in the farms (31.1%); and keeping aborted females in the herd (69.7%). For humans, risk factors were: close and prolonged contact with animals (51.2%); consumption of unpasteurized dairy products (26.9%); and assisting female animals during delivery without any protection (40.3%). This study observed a high seroprevalence of brucellosis in small ruminants and also identified risky practices that allow cross transmission between the two populations. This calls for control strategy using a multi-sectoral and multidimensional approach.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback