• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Houben, Ken"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Unravelling process-induced pectin changes in the tomato cell wall: An integrated approach
    (Elsevier ltd., 2011) Christiaens, Stefanie; Buggenhout, Sandy Van; Houben, Ken; Chaula, Davis; Loey, Ann M. Van; Hendrickx, Marc E.
    The activity of the pectin-modifying enzymes pectin-methylesterase (PME) and polygalacturonase (PG) in tomato fruit was tailored by processing. Tomatoes were either not pretreated, high-temperature blanched (inactivation of both PME and PG), or high-pressure pretreated (selective inactivation of PG). Subsequently, two types of mechanical disruption, blending or high-pressure homogenisation, were applied to create tomato tissue particle suspensions with varying degrees of tissue disintegration. Pro- cess-induced pectin changes and their role in cell–cell adhesion were investigated through in situ pectin visualisation using anti-pectin antibodies. Microscopic results were supported with a (limited) physico- chemical analysis of fractionated walls and isolated polymers. It was revealed that in intact tomato fruit pectin de-esterification is endogenously regulated by physical restriction of PME activity in the cell wall matrix. In disintegrated tomato tissue on the other hand, intensive de-esterification of pectin by the activity of PME occurred throughout the entire cell wall. PG was selectively inactivated (i.e. in high- pressure pretreated tomatoes), with de-esterification of pectin by PME, which resulted in a high level of Ca 2+ -cross-linked pectin and a strong intercellular adhesion. In non-pretreated tomato suspensions on the other hand, combined PME and PG activity presumably led to pectin depolymerisation and, hence, reduced intercellular adhesion. However, because of the high amount of Ca 2+ -cross-linked pectin in these samples, cell–cell adhesion was still stronger than in the high-temperature blanched tomatoes, in which the absence of PME activity during suspension preparation implied few Ca 2+ -cross-linked pectic polymers and extensive cell separation upon tissue disruption.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback