Browsing by Author "Mahoo, H.F"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Assessment of upgrading strategies to improve regional food systems in Tanzania: Food processing, waste management and bioenergy, and income generation(SAGE, 2015) Graef, F; Schneider, I; Fasse, A; Germer, J.U; Gevorgyan, E; Haule, F; Hoffmann, H; Kahimba, F.C; Kashaga, L; Kashaga, L; Lambert, C; Lana, M; Mahoo, H.F; Makoko, B; Mbaga, S.H; Mmbughu, A; Mmbughu, S; Mrosso, L; Mutabazi, K.D; Mwinuka, L; Ngazi, H; Nkonya, E; Said, S; Schaffert, A; Schäfer, M.P; Schindler, J; Sieber, S; Swamila, M; Welp, H.M; William, L; Yustas, Y.MFood security is one of the main goals of rural poor people. To enhance food security in this context, participatory action research can help to ensure sustained success while considering entire food value chains (FVC). This paper assesses the feasibility and potential success of upgrading strategies (UPS) as well as their assessment criteria as developed by German and Tanzanian agricultural scientists. The results form part of a larger participatory research project conducted in two climatically representative regions of Tanzania: semi-arid Dodoma and subhumid Morogoro. This paper presents the findings with respect to food processing, waste management and bioenergy, along with income generation and market participation. Assessments on other components of the FVC, including natural resource management, crop production and consumption, are reported by Graef et al (2015). The assessments for food processing revealed preferences for preservation techniques, oil extraction processes and food storage devices for the semi-arid region. In contrast, in the subhumid region, the experts favoured food storage devices and preservation techniques. Assessments of waste management and bioenergy UPS for both regions indicated the importance of animal feed from crop residues, crop residues as mulch and compost from food waste, although with somewhat different priorities. Assessments on income generation and markets in both regions revealed preferences for savings and credit cooperatives and communication techniques, but also indicated that warehouse receipt systems and guarantee systems had a high impact. Assessments differed between the two different climatic regions, and to some extent also between the nationality of experts and their gender. The authors therefore attach importance to integrating different South–North and female–male awareness in assessments among scientists. Moreover, local and/or regional stakeholders and experts should be involved in developing site-adapted UPS for enhancing FVCs.Item Economic viability of system of rice intensification (sri) technology in Morogoro, region, Tanzania(Tanzania Journal of Agricultural Sciences, 2023) Mkubya, R.W; Damas, P; Mahoo, H.FThe objective of this study is to analyze the benefits and costs of the system of rice intensification in the Morogoro Region, Tanzania. The cost-benefit analysis theory was used in this study. Data were collected by using a questionnaire and checklists after a preliminary survey that aimed at familiarizing the researcher with the study area and pre-test the questionnaire to gauge the relevance of the questions and their comprehensiveness. The study adopted a multistage sampling method. The sample size of 384 farmers was randomly selected. The viability of each production method (SRI and Conventional) was estimated using the Cost-Benefit Analysis. Overall, the results of the comparison of economic viability between SRI and Conventional method projects indicated that the former (SRI) was more profitable and viable than the latter (Conventional Method) at discount rates (Interest rates) equal to or less than 12% respectively. In terms of both NPVs and BCRs interest rates often decrease, making borrowing money less expensive. However, the increase in NPV revealed that the System of Rice Intensification was more profitable than the conventional method of rice production. The sensitivity analyses, of the NPVs for the SRI and Conventional Method projects, respectively, were negative at discount rates of more than 54.17749% and 32.10396%, indicating that the projects were not financially feasible at rates higher than these, but when measured in terms of IRR, SRI outperformed the conventional technique. In general, the empirical findings showed that the System of Rice Intensification produces rice at a higher profit than the conventional method. Therefore, it is important to encourage rice farmers to use the system of Rice IntensificationItem Evaluation of Irrigation Water Quality for Paddy Production at Bumbwisudi Rice Irrigation Scheme, Zanzibar(TAJAS, 2016) Kahimba, F.C; Ali, R. M; Mahoo, H.FItem The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)(Elsevier, 2021) Mwinuka, Paul Reuben; Mbilinyi, Boniface P; Mbungu, Winfred B; Mourice, Sixbert K; Mahoo, H.F; Schmitter, PetraThis study was conducted to evaluate the feasibility of a mobile phone-based thermal and UAV-based multi spectral imaging to assess the irrigation performance of African eggplant. The study used a randomized block design (RBD) with sub-plots being irrigated at 100% (I100), 80% (I80) and 60% (I60) of the calculated crop water requirements using drip. The leaf moisture content was monitored at different soil moisture conditions at early, vegetative and full vegetative stages. The results showed that, the crop water stress index (CWSI) derived from the mobile phone-based thermal images is sensitive to leaf moisture content (LMC) in I80 and I60 at all vegetative stages. The UAV-derived Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI) correlated with LMC at the vegetative and full vegetative stages for all three irrigation treatments. In cases where eggplant is irrigated under normal conditions, the use of NDVI or OSAVI at full vegetative stages will be able to predict eggplant yields. In cases where, eggplant is grown under deficit irri gation, CWSI can be used at vegetative or full vegetative stages next to NDVI or OSAVI depending on available resources.Item Indigenous knowledge as decision support tool in rainwater harvesting(Elsevier [Commercial Publisher], 2005-08-15) Mbilinyi, B.P; Tumbo, S.D; Mahoo, H.F; Senkondo, E.M; Hatibu, NRainfall patterns in semi-arid areas are typically highly variable, both spatially and temporally. As a result, people who rely com- pletely on rainwater for their survival have over the centuries developed indigenous knowledge/techniques to harvest rainwater. These traditional water-harvesting systems have been sustainable for centuries. The reason for this is that they are compatible with local life- styles, local institutional patterns and local social systems. In order to develop sustainable strategies, it is therefore important to take into account of, and learn from, what local people already know and do, and to build on this. This paper explores how indigenous knowledge is used by farmers in the Makanya catchment, Kilimanjaro region, Tanzania to identify potential sites for rainwater harvesting (RWH). The paper draws on participatory research methods including focus group discussions, key informant interviews, field visits and partic- ipatory workshops. Initial findings indicate that farmers do hold a substantial amount of knowledge about the resources around them. As there are spatially typical aspects to indigenous knowledge, it could be extrapolated over a wider geographic extent. From the pre- liminary findings, it is being recommended that geographic information system (GIS) could be an important tool to collect and upscale the utility of diverse indigenous knowledge in the decision-making process.Item Influence of irrigation water quality on soil salinization in semi-arid areas: a case study of Makutopora, Dodoma-Tanzania(International Journal of Scientific & Engineering Research, 2015) Batakanwa, F.J; Mahoo, H.F; Kahimba, F.CThis research was carried out in Dodoma, at Makutopora Agricultural Research Institute. The main objective was to determine the influence of irrigation water on soil salinization in semi-arid areas. A total of 80 representative soil samples were randomly collected from study area. Two water samples were also collected from the study area. The samples were treated and analyzed for physical and chemical related indices. The results are grouped into general quality parameters, which included salinity and salt inducing cations and anions. The findings indicated that the mean pH was 7.53 while the mean EC value was 944.5 μS/cm. The mean cations in the water were 3.97, 4.32, 2.57, and 11.39 meq/l for Ca2+, Mg2+, K+, and Na+, respectively. The Sodium Adsorption Ratio (SAR) was 5.60. The mean carbonates concentration detected in the irrigation water was 9.05 meq/l, while the mean chloride and sulfide were 17.20 and 3.6 meq/l, respectively. Soil samples were grouped into three major groups namely non-irrigated, half irrigated, and full irrigated soils. For the non-irrigated, half irrigated, and full irrigated soils: the mean pH in the soil was 6.59, 6.89 and 7.04, respectively; the mean ECe were 94.35, 338.5, and 344.72, mS/cm, respectively; SAR was 0.76, 2.64, and 4.82, respectively; exchangeable cations and anions as shown in Table 4, 6 and 8. The results reveal that water may have the potential to be hazardous to the soil as well as to the crop grown because most parameters were above safe limits. The linear regression model showed high correlation of soil salinity with exchangeable bases with R2 =0.776 and significant at p≤0.04 for non-irrigated soil, R2=0.627 at p≤0.001 for half irrigated soil, and R2=0.597 at p≤0.003 for full irrigated soil. For all soil samples the linear regression model shows strong relationships that exist between the soil salinity and exchangeable bases present in the soil. It is recommended that adequate drainage with emphasis on surface drainage should be provided and salt and sodium build up should be monitored regularlyItem Influence of Transplanting Age on Paddy Yield under the System of Rice Intensification(Agricultural Sciences, 2016-07) Reuben, P; Kahimba, F.C; Katambara, Z; Mahoo, H.F; Mbungu, W; Mhenga, F; Nyarubamba, A; Maugo, MAgronomic practices such as transplanting age, plant spacing, and water application regimes in irrigated paddy production can have a significant impact towards the performance in rice growth and yield. A study was conducted to investigate the optimum transplanting age for maximum rice productivity under the systems of rice intensification (SRI) technology. The study treatments adopted were three representing 8, 12 and 15 days old seedlings replicated 3 times each. The experiment was set in randomized complete block design (RCBD) and transplanted at spacing 25 cm × 25 cm between rice hills. The rice variety tested was TXD 306 Super SARO, which was recommended by the ministry of Agriculture in Tanzania. Data was collected throughout the growing season in two mixed short rains and dry season of September 2013/2014 and September 2014/2015. Data collected included biomass at vegetative, flowering and harvesting stages, total number of tillers per hill, number of productive tillers per hill, number of grains per panicle and rice grain yield at the end of the season. Data was analyzed using SAS software version 9.1. The results suggested that transplanting at younger age of 8 to 12 days was recommended for Mkindo area in Mvomero Distirct, and other areas with similar soil conditions and agro ecological characteristics.Item Optimizing Plant Spacing under the Systems of Rice Intensification (SRI)(Scientific Research Publishing Inc., 2016) Reuben, P; Kahimba, F.C; Katambara, Z; Mahoo, H.F; Mbungu, W; Mhenga, F; Nyarubamba, A; Maugo, MOptimum plant spacing is among key agronomic parameters that influence crop growth performance and crop yield. A study was conducted to investigate the optimum rice transplanting spacing under the Systems of Rice Intensification (SRI) practice in Tanzania. The study composed of five treatments of rice transplanting spacing namely 1) 15 cm × 15 cm (T1); 2) 20 cm × 20 cm (T2); 3) 25 cm × 25 cm (T3); 4) 30 cm × 30 cm (T4); and 5) 35 cm × 35 cm (T5). The experiment was set in a Randomized Complete Block Design (RCBD) and transplanted with uniform age of 12 days old seedlings in all treatments. The rice variety tested was TXD 306 Super SARO which was recommended by the Ministry of Agriculture for flooded rice in central and eastern Tanzania. Data was collected throughout the two growing seasons (Masika and Vuli) of 2013 and 2014. Data collected include biomass at vegetative, flowering and harvesting stages, total number of tillers per hill, number of productive tillers per hill, number of grains per panicle and rice grain yield at the end of the season. Data was analyzed using SAS software version 9.1. Results have shown that transplanting spacing of 25 cm × 25 cm, 30 cm × 30 cm and 35 cm × 35 cm has significantly performed better than rice transplanted at 15 cm × 15 cm and 20 cm × 20 cm. For the higher performing treatments, 25 cm × 25 cm has performed much higher than the rest. It is therefore recommended that for rice variety TXD 306 Super SARO under SRI practice in areas with soil conditions similar to Mkindo area in Morogoro Region, the optimum transplanting spacing that gives maximum yield is 25 × 25 cm.