• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Pedersen, Ole"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modeling the electrical conductivity relationship between saturated paste extract and 1:2.5 dilution in different soil textural classes
    (Department of agricultural engineering, 2024-12) Omar, Moh’d M.; Shitindi, Mawazo J.; Massawe, Boniface H. J.; Pedersen, Ole; Meliyo, Joel L.; Fue, Kadeghe G.
    Regression models were developed to estimate the electrical conductivity of saturated paste extract (ECe) from the electrical conductivity of soil-water ratio (EC1:2.5) for different soil textural classes. ECe is a crucial parameter used to indicate the presence, type, and distribution of salinity in soils. However, determining ECe is demanding, time-consuming, requires considerable skill to accurately identify the correct soil saturation point, and is not routinely performed by soil testing laboratories. Many laboratories, instead, commonly measure the electrical conductivity of soil-water extracts at various dilutions, such as EC1:1, EC1:2.5, or EC1:5. In this study, 706 soil samples were collected from depths of 0 - 30 cm across three rice irrigation schemes to determine EC1:2.5, with 50% analyzed for ECe. ECe values were grouped based on soil textural classes. The results showed a strong linear relationship between EC1:2.5 and ECe values, with a high coefficient of determination (R² > 0.95). The Root Mean Square Error values were low (1.4 < RMSE), and the Mean Absolute Error values were similarly low (0.85 < MAE). Therefore, the regression models developed provide a practical means of estimating ECe for various soil textural classes, thereby enhancing soil salinity assessment and management strategies

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback