Browsing by Author "Pelle, R"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Molecular epidemiology of Brucella species in mixed livestock-human ecosystems in Kenya(Nature scientific Report, 2021) Akoko, JM; Pelle, R; Lukambagire, AS; Machuka, EM; Nthiw, D; Mathew, C; Fèvre, EM; Bett, B; Cook, EAJ; Othero, D; Bonfoh, B; Kazwala, R; Shirima, G; Schelling, E; Halliday, JEB; Ouma, CBrucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.Item Serological and molecular evidence of brucella species in the rapidly growing pig sector in Kenya(BMC Veterinary Research, 2020) Akoko, J; Pelle, R; Kivali, V; Schelling, E; Shirima, G; Mathew, C; Kyallo, V; Bonfoh, B; Kazwala, R; Ouma, C; Machuka, E. M.; Fèvre, E. M.; Falzon, L. C.; Lukambagire, A. S.; Halliday, J. E. B.Background: Brucellosis is an emerging yet neglected zoonosis that has been reported in Kenya. Epidemiological data on brucellosis in ruminants is readily accessible; however, reports on brucellosis in pigs remain limited. This study sought to detect Brucella infection in pig serum by both serological and molecular techniques. Serum from 700 pigs randomly collected at a centralized abattoir in Nairobi region, Kenya were screened in parallel, using both Rose Bengal Test (RBT) and competitive Enzyme-Linked Immuno-sorbent Assay (cELISA) for antibodies against Brucella spp. All sera positive by RBT and 16 randomly selected negative samples were further tested using conventional PCR targeting bcsp31 gene and real-time PCR (RT-PCR) assays targeting IS711 and bcsp31 genes. Results: A prevalence of 0.57% (n = 4/700) was estimated using RBT; none of these samples was positive on cELISA. All RBT positive sera were also positive by both PCRs, while two sero-negative samples also tested positive on RTPCR (n = 6/20). Brucella abortus was detected in four out of the six PCR positive samples through a real-time multiplex PCR. Conclusion: The detection of antibodies against Brucella spp. and DNA in serum from slaughterhouse pigs confirm the presence of Brucella in pigs. Therefore, investigation of the epidemiology and role of pigs in the transmission of brucellosis in Kenya is needed. Further targeted studies would be useful to systematically quantify and identify the spp. of Brucella in pigs.