Browsing by Author "Platts, P. J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Land cover change and carbon emissions over 100 years in an African biodiversity hotspot(Wiley Researcher Academy., 2016) Willcock, S.; Phillips, O . l.; Platts, P. J.; Swetnam, R. D.; Balmford, A.; Burgess, N. D.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K.; Fanning, E.; Green, J. M. H.; Hall, J.; Howell, K. l.; Lovett, J. C.; Marchant, R.; Marshall, A. R.; Mbilinyi, B.; Munishi, P. K. T.; Owen, N.; Topp-Jorgensen, E. J.; Lewis, S. l.Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the presatellite era. Here, we quantify the LULCC history across the 33.9 million ha watershed of Tanzania’s Eastern Arc Mountains, using geo-referenced and digitized historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a fivefold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4– 1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha 1 yr 1. This is at least threefold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8–5.7) Mg C ha 1, compared to a committed loss of 11.9 (7.2–16.6) Mg C ha 1 within areas lacking such protection. Furthermore, for nine protected areas where LULCC data are available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics.Item Quantifying and understanding carbon storage and sequestration within the Eastern Arc mountains of Tanzania, a tropical biodiversity hotspot(Carbon Balance and Management., 2014) Willcock, S.; Phillips, O. L.; Platts, P. J.; Balmford, A.; Burgess, N. D.; Lovett, J .C.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K.; Fanning, E.; Green, J. M. H.; Hall, J.; Howell, K. L.; Marchant, R.; Marshall, A. R.; Mbilinyi, B.; Munishi, P. K .T.; Owen, N.; Swetnam, R. D.; Jorgensen, E. J. T.; Lewis, S. L.Background: The carbon stored in vegetation varies across tropical landscapes due to a complex mix of climatic and edaphic variables, as well as direct human interventions such as deforestation and forest degradation. Mapping and monitoring this variation is essential if policy developments such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation) are to be known to have succeeded or failed. Results: We produce a map of carbon storage across the watershed of the Tanzanian Eastern Arc Mountains (33.9 million ha) using 1,611 forest inventory plots, and correlations with associated climate, soil and disturbance data. As expected, tropical forest stores more carbon per hectare (182 Mg C ha-1) than woody savanna (51 Mg C ha-1). However, woody savanna is the largest aggregate carbon store, with 0.49 Pg C over 9.6 million ha. We estimate the whole landscape stores 1.3 Pg C, significantly higher than most previous estimates for the region. The 95% Confidence Interval for this method (0.9 to 3.2 Pg C) is larger than simpler look-up table methods (1.5 to 1.6 Pg C), suggesting simpler methods may underestimate uncertainty. Using a small number of inventory plots with two censuses (n = 43) to assess changes in carbon storage, and applying the same mapping procedures, we found that carbon storage in the tree-dominated ecosystems has decreased, though not significantly, at a mean rate of 1.47 Mg C ha-1 yr-1 (c. 2% of the stocks of carbon per year). Conclusions: The most influential variables on carbon storage in the region are anthropogenic, particularly historical logging, as noted by the largest coefficient of explanatory variable on the response variable. Of the non-anthropogenic factors, a negative correlation with air temperature and a positive correlation with water availability dominate, having smaller p-values than historical logging but also smaller influence. High carbon storage is typically found far from the commercial capital, in locations with a low monthly temperature range, without a strong dry season, and in areas that have not suffered from historical logging. The results imply that policy interventions could retain carbon stored in vegetation and likely successfully slow or reverse carbon emissions.