• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Solberg, Svein"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mapping and estimating the total living biomass and carbon in low‐biomass woodlands using landsat 8 CDR data
    (CrossMark, 2016-06-24) Gizachew, Belachew; Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole Martin; Breidenbach, Johannes; Zahabu, Eliakimu; Mauya, Ernest William
    Background: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emis- sions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km 2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem sug- gested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.
  • Loading...
    Thumbnail Image
    Item
    Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+
    (Springer, 2015) Solberg, Svein; Gizachew, Belachew; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole Martin; Mauya, Ernest William; Olsson, Håkan; Malimbwi, Rogers; Zahabu, Eliakimu
    Background: REDD+ implementation requires establishment of a system for measuring, reporting and verification (MRV) of forest carbon changes. A challenge for MRV is the lack of satellite based methods that can track not only deforestation, but also degradation and forest growth, as well as a lack of historical data that can serve as a basis for a reference emission level. Working in a miombo woodland in Tanzania, we here aim at demonstrating a novel 3D satellite approach based on interferometric processing of radar imagery (InSAR). Results: Forest carbon changes are derived from changes in the forest canopy height obtained from InSAR, i.e. decreases represent carbon loss from logging and increases represent carbon sequestration through forest growth. We fitted a model of above-ground biomass (AGB) against InSAR height, and used this to convert height changes to biomass and carbon changes. The relationship between AGB and InSAR height was weak, as the individual plots were widely scattered around the model fit. However, we consider the approach to be unique and feasible for large-scale MRV efforts in REDD+ because the low accuracy was attributable partly to small plots and other limitations in the data set, and partly to a random pixel-to-pixel variation in trunk forms. Further processing of the InSAR data provides data on the categories of forest change. The combination of InSAR data from the Shuttle RADAR Topography Mission (SRTM) and the TanDEM-X satellite mission provided both historic baseline of change for the period 2000–2011, as well as annual change 2011–2012. Conclusions: A 3D data set from InSAR is a promising tool for MRV in REDD+. The temporal changes seen by InSAR data corresponded well with, but largely supplemented, the changes derived from Landsat data.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback