Robust edge detection method for the segmentation of diabetic foot ulcer images

dc.contributor.authorMwawado, Rehema
dc.date.accessioned2023-09-12T12:02:38Z
dc.date.available2023-09-12T12:02:38Z
dc.date.issued2020-08
dc.descriptionRobust Edge Detection Method for the Segmentation of Diabetic Foot Ulcer Images; Vol. 10, No. 4, 2020, PP. 6034-6040en_US
dc.description.abstractSegmentation is an open-ended research problem invarious computer vision and image processing tasks. This pre-processing operation requires a robust edge detector to generateappealing results. However, the available approaches for edgedetection underperform when applied to images corrupted by noise or impacted by poor imaging conditions. The problembecomes significant for images containing diabetic foot ulcers, which originate from people with varied skin color. Comparative performance evaluation of the edge detectors facilitates the process of deciding an appropriate method for image segmentation of diabetic foot ulcers. Our research discovered that the classical edge detectors cannot clearly locate ulcers in images with black-skin feet. In addition, these methods collapse for degraded input images. Therefore, the current research proposes a robust edge detector that can address some limitationsof the previous attempts. The proposed method incorporates a hybrid diffusion-steered functional derived from the total variation and the Perona-Malik diffusivities, which have been reported to can effectively capture semantic features in images. The empirical results show that our method generates clearer and stronger edge maps with higher perceptual and objective qualities. More importantly, the proposed method offers lower computational times—an advantage that gives more insights into the possible application of the method in time-sensitive tasks.en_US
dc.identifier.issn6034-6040
dc.identifier.urihttp://www.suaire.sua.ac.tz/handle/123456789/5744
dc.language.isoenen_US
dc.subjectExecution timeen_US
dc.subjectDiabetic foot ulcersen_US
dc.subjectEdge detectionen_US
dc.titleRobust edge detection method for the segmentation of diabetic foot ulcer imagesen_US
dc.typeArticleen_US
dc.urlhttps://www.etasr.com/index.php/ETASR/article/view/3495en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JA_CoCSE_2020.pdf
Size:
826.04 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: